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Note 

Analytic Inversion of Nine-Point Poisson Operator 

The analytic inversion of finite-difference Poisson operators has been extended 
from the five-point operator [l] to the nine-point operator, taken in the form [2] 

The potentials due to a solitary negative gaussian unit charge at the origin (top 
left corner) are 

1.0472 3.6276 5.0208 5.8355 
(--.0117) (-.0048) (-.OOll) 

4.3392 5.2502 5.9419 
(+.0067) (+.0014) (-.OOOO) 

5.7195 6.2046 
( f .0007) (+ .0003) 

6.5299 
(f.0002) 

The bracketed numbers indicate by how much these potentials exceed the ideal, 
CD = ln(distance2) + constant, and they are about one order of magnitude smaller 
than for the five-point operator. The “constant” differs from that for the five-point 
operator by ln(3/2); see below. 

The potential zero is chosen so that at the origin, one has only the contribution 
4~/12 associated with the (h2/12) Y2 term. Elsewhere, for row and column indices 
n, M and with 5 = exp(in/6), 

to be deduced by making a few changes in the analysis presented in Ref. [l]. (Speci- 
fically, the expression for K + l/K becomes (10 - 4 cos 2nk/N)/(2 + cos 2&z/N), 
a multiplier (4 + K + l/K)/6 accompanies the recurring quantity l/(K - l/K), the 

square root .\/2t2 + I is replaced by 2/(4t2/3) i- 1, 1~2 becomes 1:‘3 in the for- 
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mulas connecting t with T, 47 becomes e’ rn/3 in the expression for eis but it becomes 
einj6 in the last formula for K.) Symmetry in n, m is nontrivial. 

Evaluation of the integral gives CD, w = 277/2/3, and further along the top line 
one can use the definitions 

E, = @t’, El z @p’ - @y, 

which obey the recurrence relation 

Cm + 1)(~%+~ - 7E,) = m(7E,,, - E,& - 24, 

to be deduced by differentiating the function 

24(3 - T & + 1)” (1 - T”)/(T” + 7 fi + I)-. 

(Hence @i2’ = 1677/ ~‘3 - 24, QO (3) = 162n-43 - 288, etc.) An asymptotic solu- 
tion is E, = [2/(m + l/2)] + o(m-“) for the gradients between grid points. 

Having created the top line, one applies the nine-point operator first at the 
origin to deduce. @ il) = 677 - 87r/1/3 and then elsewhere along the top line to get 
the values on the first line below. Using symmetry about the diagonal and using 
the nine-point operator everywhere else to the right of the diagonal, one can then 
fill in the rest of the table. The value of the constant along with the logarithm was 
found empirically to be 2y + In 12 (y = Euler’s constant) as against 2y + In 8 
for the five-point operator. The form of the constant, 2y + In (integer), was 
guessed. The integer 12 fitted so well as to leave no doubt about its correctness. 
However, a general proof could not be found. Nor was it possible to prove without 
exception that the multipliers of 2rr/ ~‘3 in the analytic expressions for the potentials 
must always be integers: the multipliers of n obviously are, and the remaining 
contributions to the analytic expressions for ~3:) are rational. 
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